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Motivation
Main research question: How can we reliably train 
language models to generate contextually relevant 
utterances? 

Prior work has investigated training pragmatic 
language models with communication-based 
objectives, where neural listeners stand in as 
communication partners. However…  

Challenges include (a) obtaining a well-calibrated 
listener model, and (b) listener models are domain-
specific, which often makes them overconfident 
about poorly generated utterances [1]. 

Our work explores whether pragmatic language 
learning is better with a well-calibrated domain-
agnostic listener [2, 3].

Listeners (L)

We experiment with two types of listeners that differ in 
which dataset they were trained on. Both listeners are a 
distribution over possible targets in a reference game. 
Specifically:


where  and  are the listener’s image and language 
encoders, respectively.


Domain-specific (DS) listener  is trained on the 
ShapeWorld dataset.

Domain-agnostic (DA) listener  is the CLIP model 
(Contrastive Language-Image Pre-training), which is pre-
trained on 400 million (image, text) pairs collected from 
the internet [5].
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Setup
We study the problem of training a pragmatic 
speaker for reference games with the ShapeWorld 
dataset [4]. 

A reference game  consists of  images 

 and a target image , with the index  
known only to the speaker. 

The objective of the speaker  is to produce an 
utterance  which allows the listener  to identify 
the target  given the images.
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I = (i1, . . . , in) it t

fS
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Results and AnalysisMethod

 fL(t |I, u) ∝ exp(g(it)⊤h(u))

Listener takeaways:

• Domain-agnostic (DA) listeners are better calibrated than domain-specific (DS) listeners: DA listeners can signal when an 

utterance is out-of-distribution (OOD). 

• However, the DS listener is more confident about in-distribution (ID) utterances!

“red circle”

speaker’s utterance

listener’s prediction

Target image Distractor images

• We show that the domain specificity of listeners and their high 
confidence in in-domain utterances is important for training pragmatic 
speakers.


• Our research can be extended to pragmatic language learning in other 
domains like COCO [6], where we can experiment with new variations of 
listener models and speaker objectives.

Discussion

Speakers (S)

Speakers are trained to produce an utterance  
for the listeners given a game and desired target. 
Specifically:


where  is the speaker’s image encoder. 

Our work considers three base speaker objectives:

• Domain-agnostic (DA) pragmatic training:


• Domain-specific (DS) pragmatic training: 


• Supervised (sup) training: 


g

￼

 fS(u |I, t) = pS(u |g(it), g(i1), . . . , g(in−1))

￼

￼

Examples of generated utterances

Objective Utterance
ground truth yellow rectangle

siren dara dara dara
lewis prize prize lewis

yellow rectangle
religions

yellow rectangle
￼￼￼ ￼
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“red shape”
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Speaker takeaways:

• Domain specificity and high-confidence in ID utterances is key to training pragmatic speakers:                   performs the best. 

Giving the speaker high rewards when it generates ID utterances is critical.

• Because the DS listener is more confident about ID utterances than the DA listener, the DS listener gives the speaker higher 

rewards for generating useful ShapeWorld utterances.
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