

Bridging the Novice-Expert Gap via Models of Decision-Making

Rose E. Wang*

Carly Robinson Susanna Loeb Dorottya Demszky Qingyang Zhang *rewang@cs.stanford.edu, Stanford University

• **Motivation:** The pandemic has caused a historical low in K-12 mathematics performance.

- Challenge of scaling high-quality tutoring: Due to growing demand, many tutoring platforms employ novice tutors who, unlike experienced educators, struggle to address student mistakes and thus fail to seize prime learning opportunities.
- Novice tutors have content knowledge (+), but struggle with writing pedagogically aligned responses (-).
- Large language models (LLMs) generate coherent text at scale (+) but have questionable content & pedagogical knowledge (-).
- Experienced math teachers have content & pedagogical knowledge (+) but are hard to scale (-).

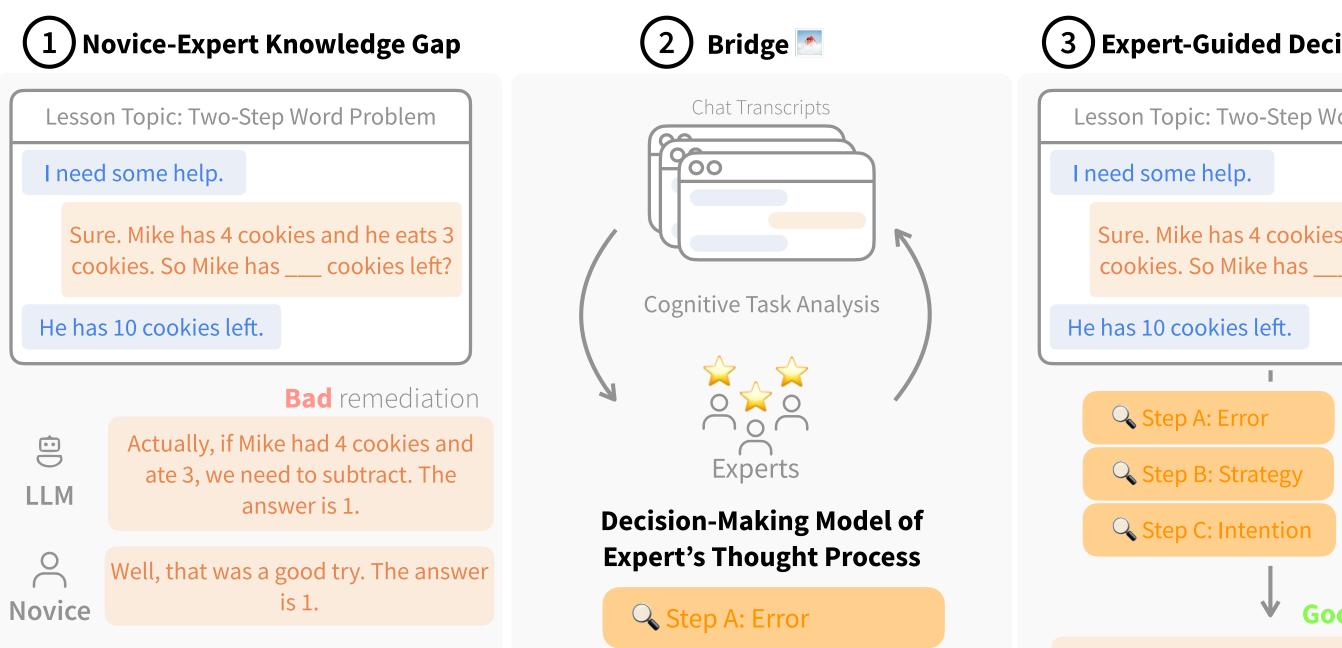
Key Question: Can we model how experts *think* to improve LLM performance and scale high-quality tutoring?

Results

LLMs benefit from Bridge decision-making.

Method Prefer Useful Care Not Robot Overall Model c_r Bridge

	Expert	1.26	1.19	0.86	0.78	1.02
—	GPT-3.5	0.47	0.47	-0.04	0.23	0.28
_	GPT-4	0.54	0.54	0.50	0.47	0.51
Expert Expert	GPT-3.5	0.65	0.58	-0.04	0.59	0.45
	GPT-4	0.95	0.97	0.70	0.70	0.83
Self Self	GPT-3.5	0.36	0.33	-0.17	0.15	0.16
	GPT-4	1.02	1.05	0.62	0.68	0.84
Random Random	GPT-3.5	0.20	0.12	0.10	0.28	0.17
	GPT-4	0.32	0.36	-0.13	0.51	0.26

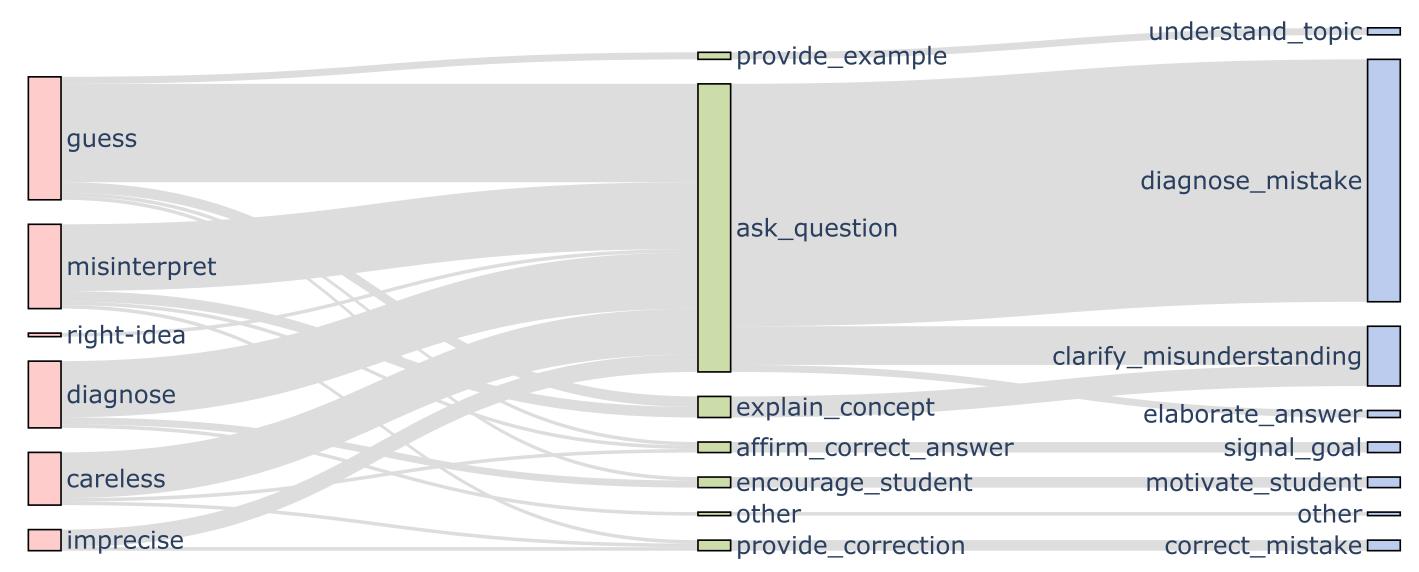

Contributions

Method. Bridge **Method**, a framework that breaks down experts' hidding decision processs in remediating student math mistakes (a key learning opportunity).

Dataset. 700 examples with expert decisions and responses, across 120 different math topics.

Evaluations. Bridge improves LLM performance on remediation!

Bridge: Method for Modeling Expert Decision-Making



L	Lesson Topic: Two-Step Word Problem				
h	need some help.				
	Sure. Mike has 4 cookies and he eat cookies. So Mike has cookies le				
He	e has 10 cookies left.				
	I				
	Step A: Error				
	Step B: Strategy + LLM				

Not quite, let's try again. If Mike starts with

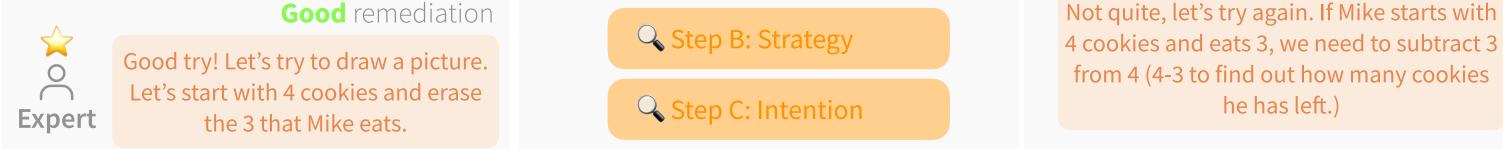

he has left.)

Table 1. Abbreviated Human evaluations. The expert-written responses are grayed as a reference. The highest column values are **bolded**; and highest values amongst LLMs are highlighted. Two rows are highlighted if they are not statistically different.

LLMs do not make diverse decisions.

Figure 2. GPT-4 Decision-Making Paths.

Human expert decisions paths are extremely *diverse*.

	provide_correction	correct_mistake
	<pre>provide_hint provide_example</pre>	hint_mistake
careless right-idea	<pre>provide_strategy encourage_student</pre>	understand_topic
guess	explain_concept	support_thinking explain_mistake —
	ask_question	elaborate_answer
diagnose	<pre>provide_similar_problem clarify simplify_question</pre>	diagnose_mistake _misunderstanding other
misinterpret	other	signal_goal
imprecise	affirm_correct_answer	motivate_student

Figure 1. Human Expert Decision Paths of student error, strategy and intention

Domain Experts

- 4 certified math teachers from diverse demographics in terms of gender and race;

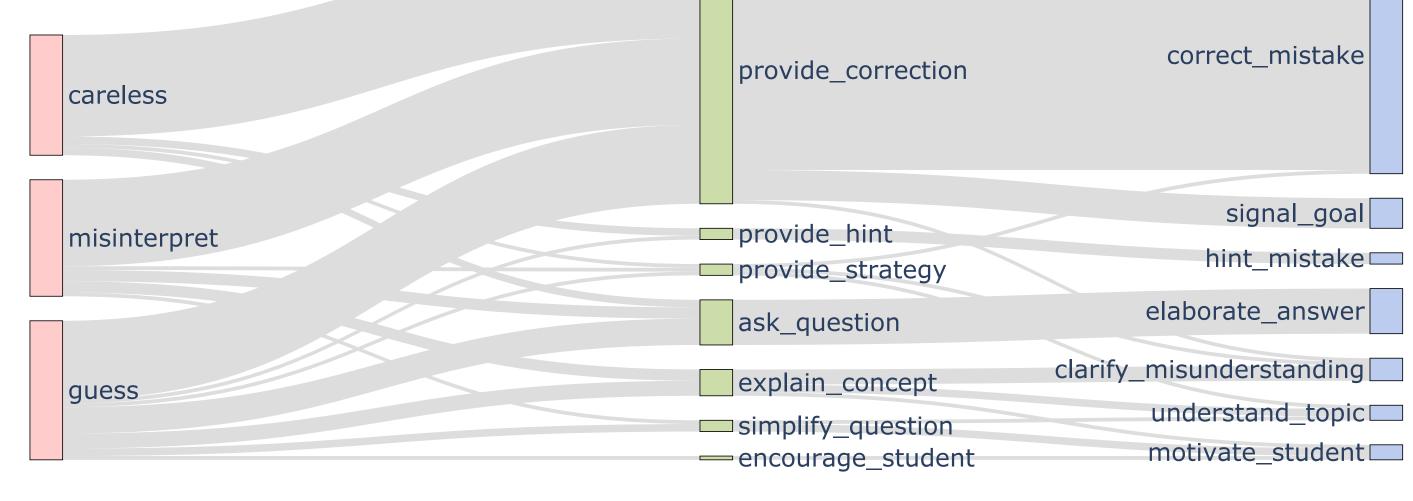


Figure 3. GPT-3.5 Decision-Making Paths.

Bridge language centers the student's problem-solving process.

GPT4		Expert + GPT4		Self + GPT4		Random +GPT4	
bigram	log odds	bigram	log odds	bigram	log odds	bigram	log odds
lets_closer	2.76	steps_took	2.04	can_explain	4.98	good_try	1.82
closer_look	2.68	review_concept	1.66	explain_arrived	4.78	start_remember	1.58
effort_lets	2.55	understand_concept	1.56	arrived_answer	4.2	thats_right	1.57
appreciate_effort	2.29	help_understand	1.56	arrived_number	2.19	try_again	1.54
correct_solution	2.19	explain_steps	1.56	are_sure	2.19	thats _good	1.43
look_problem	2.18	took_arrive	1.56	sure_that	2.19	lets_break	1.37
great_effort	1.62	lets_step	1.51	correct_remember	1.38	glasses_water	1.3
lets_steps	1.55	better_understand	1.31	and_long	1.38	for_example	1.3
need_help	1.55	ones_place	1.31	digit_answer	1.38	times_equal	1.3
let_know	1.55	number_sides	1.31	answer_step	1.38	represents_glasses	1.29

- Each with 8+ years of teaching experience including public schools, Title 1 schools, and charter schools;
- Paid \$50/hr for framework; \$40/hr for annotation.

Data Sources

- Tutoring chat transcripts with elementary school students from Southern school district serving serving > 30k students;
- 3rd-8th grade students;
- 120 different math topics, including "Word Problems", "Order of Operations", and "Graphing on a Coordinate Grid";
- Majority of schools classified as Title I and $\frac{3}{4}$ students identify as Hispanic/Latinx.

Table 2. Top 10 bigrams. GPT4 with expert- or self decision-making engages more with the student's problem-solving process. GPT4 with no and random decision-making engages superficially with the student's answer.

Summary and Next Steps

- **Teaching is hard**. Challenge is hidden in their internal, pedagogical decisions.
- **This work's insight**: We need to explicitly model the internal decisions of real experts with Bridge \square .
- Can real novice tutors benefit Bridge? Ongoing Randomized Controlled Trial with Tutor CoPilot https://osf.io/8d6ha.

